A RISK ANALYSIS OF THE MOLYBDENUM-99 SUPPLY CHAIN USING BAYESIAN NETWORKS

2017 Mo-99 Topical Meeting Jeffrey Liang, D.Eng.

OVERVIEW

- Motivation
- Background and Problem Description
- Research Questions and Limitations
- Methodology
- Findings
- Conclusions and Future Recommendations

MOTIVATION

- Subject for Dissertation, focusing on Engineering Management
- National Research Universal (NRU) reactor ceased production of Molybdenum-99 (99Mo) in Oct 2016
 - Represents 19% of global ⁹⁹Mo production
 - Only producer in North America
- Effects of the NRU shutdown on the 99Mo supply chain is the subject of debate
 - National Academy of Sciences: ">50% likelihood of severe shortages"
 - Nuclear Energy Agency: "supply chain capacity should be sufficient"
- Majority of the remaining reactors are over 45 years old

METHODOLOGY

- Bayesian Network
 - Each risk or performance measure is represented as an event
 - Captures the likelihood of a given chain of events occurring
 - Allows for back-propagation to see what parent events caused an outcome
- Modeled Reactor to Processor section of the supply chain
 - Once processed into Generators, ⁹⁹Mo can be shipped anywhere by air
 - Each reactor and processing facility was a node in the network
 - Quantity of ⁹⁹Mo produced or processed was the outcome of each node

WHAT IS A BAYESIAN NETWORK?

- Extension of Bayes' Theorem, which represents the probability of a hypothesis occurring after considering the effect of evidence on past experience
 - Provides a way to combine both evidence and subjective beliefs
 - Particularly useful in situations where there is a high degree of uncertainty
- The network consists of nodes and arcs
 - Each node represents variables; each arc denotes parent-child relationships
 - Each node has a conditional probability table that lists each of the different combinations of values from parent nodes and the probabilities of that outcome occurring

BAYESIAN EXAMPLE

- 20% Chance of Rain
- If it is not raining, the sprinklers are set to turn on 40% of the time
- If it rains, there is a 1% chance the rain sensor will fail and the sprinkler will still activate
- What is the probability the grass will be wet at any given time?

		GRASS WET	
SPRINKLER	RAIN	Т	F
F	F	0.0	1.0
F	Т	0.8	0.2
Т	F	0.9	0.1
Т	Т	0.99	0.01

NETWORK DIAGRAM

Mo-99 Supply Chain

Bayesian Network Model

Reprinted from "Molybdenum-99 for Medical Imaging" (p. 53), by the National Academies of Sciences, Engineering, and Medicine, 2016, Washington, DC: The National Academies Press.

LIMITATIONS

- Could not access business-specific operating information
 - Proprietary Information
 - Reactor scheduling or production decisions
 - Processor sourcing decisions
 - Does not include actual vs planned operating data
- Impact on Model
 - Used typical number of operating days to calculate probability of operating
 - Model is focused on determining probability of final production levels
 - Not a system dynamics or stock-and-flow model
 - Does not illustrate how companies would choose where to ship

Normal Production Maximum Production Reactor **Probability Probability** Value Value NRU 23.29% 23.29% 4680 76.71% 4680 76.71% 45.21% 45.21% Maria 1500 0.00% 54.79% 1500 2700 0.00% 2700 54.79% 27.12% 27.12% 4680 72.88% 4680 0.00% 5400 0.00% 5400 72.88% BR-2 47.95% 47.95% 52.05% 5200 0.00% 5200 52.05% 7800 0.00% 7800 LVR-15 42.67% 42.67% 600 57.33% 0.00% 2400 57.33% 2400 0.00% 16.44% SAFARI-1 16.44% 2500 2500 0.00% 83.56% 83.56% 3000 0.00% 3000

PROBABILITY TABLES

- Each reactor node's probability table was based on:
 - Normal operating level
 - Maximum operating level
 - Number of operating days per year
- Not meant to be an accurate model of actual production levels
 - Illustrates the validity of using Bayesian Networks
 - Quantify risk in the supply chain
 - The data in the tables can be updated with more accurate data

Complete Bayesian Network

- Determines the probability of different levels of Mo-99 production in the supply chain
- Allows for "what-if" scenarios
 - What if reactor X has unscheduled downtime?
- Enter an outcome and find the root cause
 - If a major shortage took place, what node(s) were the likely root cause(s)?

SCENARIOS

- Prior to NRU Production Cessation
 - Probability of shortages with normal and maximum production rates
- After NRU Production Cessation
 - Probability of shortages with normal and maximum production rates
 - Probability of shortages if another reactor goes offline
 - Root Causes of a major or minor shortage

FINDINGS

 Supply chain can meet demand after NRU shutdown, but reactor coordination will be critical

Very difficult to handle additional

unscheduled outages

Pre-NRU Cessation

Post-NRU Cessation

Maximum Production

ROOT CAUSE ANALYSIS

- HFR is largest source of risk
 - Not largest producer
 - Longest operating period
- SAFARI-1 has significant impact despite being mid-level producer
 - Single supplier to NTP
 - Loss of entire NTP supply

Major Shortage

Minor Shortage

Maximum Production

CONCLUSIONS

- Theoretically there is enough production capacity in other reactors to compensate for the loss of NRU, but there are significant sources of risk:
 - Processing facilities do not have the capacity to processing more targets
 - Multiple processing facilities can only be supplied by one reactor
- Results are a middle ground between NASM and NEA assessments
 - 24% chance of major shortage (NASM: >50%, NEA: no impact)
 - Operating schedule is just as important as production capacity
 - SAFARI-1 and NTP will guarantee a shortage if offline

CONTRIBUTIONS/FUTURE WORK

- Contributions
 - Existing assessments focused on only maximum production scenarios
 - Prior studies do not quantify the risk each node introduces
 - Prior work did not quantify probability of shortages based on different reactor outages
- Future Work
 - Extending the model
 - Different production levels for reactors
 - Incorporate actual scheduling/coordination
 - Real-time decision making tool
 - Geographic analysis of facility locations
 - Where to build new facilities mitigate the most risk
 - Which facilities are best suited for adding capacity

